ISSN: 1301-2193 E-ISSN: 1308-9846
  • Turkish Journal of
    Endocrinology and Metabolism
ORIGINAL ARTICLE

T Helper 1 Cytokines and Their Relationship with Beta Cell Function in Type 1 Diabetes
T Helper 1 Sitokinleri ve Tip 1 Diyabette Beta Hücre Fonksiyonu ile İlişkileri
Received Date : 09 Sep 2019
Accepted Date : 10 Jun 2020
Available Online : 07 Jul 2020
Doi: 10.25179/tjem.2019-71070 - Makale Dili: EN
Turk J Endocrinol Metab. 2020;24:177-183
Bu makale, CC BY-NC-SA altında lisanslanmış açık erişim bir makaledir.
ABSTRACT
Objective: In type 1 diabetes (T1D), T helper (Th) 1 cells af- fect β cell functions significantly. This study aims to explore the association between serum levels of Th1 cytokines [in- terferon-gamma (IFN-γ), interleukin (IL)-2 and tumor nec- rosis factor-alpha (TNF-α)] and β cell function in T1D. Material and Methods: The study included 110 patients with T1D (TIDPs) and 31 healthy controls. The β cell functi- ons in T1DPS were assessed by calculating mixed-meal sti- mulated C-peptide levels. T1DPs were categorized into three groups depending on results of this test (1a-lowest, 1b, 1c- highest). Cytokine levels, IFN-γ/IL-2, and TNF-α/IL-2 ratios in T1DPs were compared with that in controls. Correlation analysis between cytokine levels and diabetes-related para- meters was then carried out. Results: IFN-γ, TNF-α, IL-2 le- vels, and TNF-α/IL-2 of T1DPs were higher (p=0.02, p=0.01, p=0.008, and p=0.01, respectively) than that of controls. The highest IFN-γ/IL-2 and TNF-α/IL-2 ratios were observed in group 1b (p=0.03 and p=0.04, respectively) while the lo- west IFN-γ/IL-2 and TNF-α/IL-2 ratios were observed in group 1a (p=0.03 and p=0.04, respectively). The TNF-α le- vels were found to be negatively correlated with fasting glu- cose levels (r2=-0.003, p=0.031). However, after adjustment for age and gender, this correlation diminished (r2=-0.028, p=0.076). Conclusion: IFN-γ, IL-2, and TNF-α may exhibit a triggering role in the pathogenesis of T1D. IFN-γ/IL-2 and TNF-α/IL-2 ratios possibly have more significant roles in the progression of β cell dysfunction than other cytokines (Clini- calTrials.gov number: NCT02389335).
ÖZET
Amaç: Tip 1 diyabette (T1D) T helper (Th) 1 hücrelerinin β hücre fonksiyonuna belirgin etkisi vardır. Bu çalışmada, T1D tanısı olan hastalarda serum Th1 sitokin [interferon-gama (IFN-γ), interlökin (IL)-2 ve tümör nekrozis faktör-alfa (TNF- α)] seviyeleri ile β hücre disfonksiyonu arasında bir ilişki sap- tanması amaçlandı. Gereç ve Yöntemler: Toplam 110 tip 1 diyabetli hasta (T1DH) ve 31 sağlıklı kontrol çalışmaya alındı. T1DH’lerin β hücre fonksiyonu, karışık öğün testi ile stimüle edilmiş C-peptit düzeyi ile ölçüldü. Hastalar, bu testin sonuç- larına göre üç gruba ayrıldı (1a- en düşük, 1b,1c- en yük- sek). Sitokin seviyeleri ve IFN-γ/IL-2 ile TNF-α/IL-2 oranları kontroller ile karşılaştırıldı. Sitokin seviyeleri ile diyabet iliş- kili parametreler arasında korelasyon analizi yapıldı. Bulgu- lar: T1DH’lerin IFN-γ, TNF-α, IL-2 seviyeleri ve TNF-α/IL-2 oranı kontrollerden istatistiksel olarak anlamlı şekilde yük- sekti (sırasıyla, p=0,02, p=0,01, p=0,008, p=0,01). En yük- sek IFN-γ/IL-2 ve TNF-α/IL-2 oranı grup 1b’de gözlendi (sırasıyla, p=0,03, p=0,04) ve en düşük IFN-γ/IL-2 ve TNF- α/IL-2 oranı grup 1a’da görüldü (sırasıyla, p=0,03, p=0,04). TNF-α seviyesi, açlık glukoz seviyesi ile negative korele ola- rak saptandı (r2=-0,003, p=0,031). Ancak, yaş ve cinsiyete göre düzeltme yapıldığında bu korelasyon gözlenmedi (r2=- 0,028, p=0,076). Sonuç: IFN-γ, IL-2 ve TNF-α’nın T1D pa- togenezinde daha büyük rolü olabilir. IFN-γ/IL-2 ve TNF-α/IL-2 oranlarının β hücre disfonksiyonunun ilerleme- sindeki rolü de diğer sitokinlerden fazla olabilir (Bu çalışma- nın klinik araştırma kayıt numarası NCT02389335).
KAYNAKLAR
  1. Nunemaker CS. Considerations for Defining Cytokine Dose, Duration, and Milieu That Are Appropriate for Modeling Chronic Low-Grade Inflammation in Type 2 Diabetes. Journal of Diabetes Research 2016;Article ID 2846570, http://dx.doi.org/10.1155/2016/2846570 [Crossref]  [PubMed]  [PMC] 
  2. Ramadan, JW, Steiner SR, O'Neill CM, Nunemaker, CS. The central role of calcium in the effects of cytokines on beta-cell function: implications for type 1 and type 2 diabetes. Cell calcium, 2011; 50(6):481-490. [Crossref]  [PubMed]  [PMC] 
  3. Hughson A, Bromberg I, Johnson B, Quataert S, Jospe N et al. Uncoupling of Proliferation and Cytokines From Suppression Within the CD4+ CD25+ Foxp3+ T-Cell Compartment in the 1st Year of Human Type 1 Diabetes. Diabetes, 2011; 60(8):2125-2133. [Crossref]  [PubMed]  [PMC] 
  4. Karlsson FA, Bjork E. Beta-cell rest: a strategy for the prevention of autoimmune diabetes . Autoimmunity 1997; 26:117-122. [Crossref]  [PubMed] 
  5. Mortensen HB, Swift PG, Holl RW, Hougaard P, Hansen L et al. Multinational sudy in children and adolescents with newly diagnosed type 1diabetes: association of age, ketoacidosis, HLA status, and autoantibodies on residual beta cell function and glycemic control 12 months after diagnosis. Pediatr Diabetes 2010; 11: 218-226. [Crossref]  [PubMed] 
  6. Lu J, Liu J, Li L, Lan Y, Liang Y. Cytokines in type 1 diabetes: mechanisms of action and immunotherapeutic targets. Clinical & Translational Immunology, 2020, 9(3), e1122. [Crossref]  [PubMed]  [PMC] 
  7. American Diabetes Association. (2019). 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2019. Diabetes Care, 42(Supplement 1), S13-S28. [Crossref]  [PubMed] 
  8. Diabetes Control and Complications Trial Research Group. (1993). The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. New England journal of medicine, 329(14), 977-986. [Crossref]  [PubMed] 
  9. National Committee for Clinical Laboratory Standarts. Procedures for the collection of diagnostic blood specimens by venipuncture; approved standart. 4 th ed. NCCLS Document H3-A4;Wayne, PA:NCCLS,1998.
  10. CLSI. Protocols fort he Determination of Limits of Quantitation ; Approved Guideline. CLSI document EP17-AVol 24. . CLSI,No:34, CLSI, 940 West VAlley Road, Suite 1400, Way e, Pennsylvania 19087-1898, USA, 2004.
  11. Solidin OP, Dahlin JRB, Gresham EG, King J, Soldin SJ. Immulite 2000 age and sex-spesific reference intervals for alfa fetoprotein, homocysteine, insulin, insulin-like growth factor-1, insulin-like growth factor-1 binding protein-3, C-peptide, immunoglibulin E and intact parathyroid hormone. Clin Biocem. 2008 August; 41(12):937-947. [Crossref]  [PubMed]  [PMC] 
  12. Steffes MW, Sibley S, Jackson M, Thomas W. Beta-Cell function and the development of diabetes -related complications in the Diabetes Control and Complications Trial. Diabetes Care 2003; 26:832-836. [Crossref]  [PubMed] 
  13. Eizirik DL, Colli ML, Ortis, F. The role of inflammation in insulitis and β-cell loss in type 1 diabetes. Nature Reviews Endocrinology 2009; 5(4): 219. [Crossref]  [PubMed] 
  14. He JS, Xie PS, Luo Ds, Sun CJ, Zhang YG, et al. Role of immune dysfunction in pathogenesis of type 1 diabetes mellitus in children Asian Pac J trop Med. 2014; 7(10):823-826. [Crossref] 
  15. Foulis AK, McGill M, Farquharson MA. Insulitis in type 1 (insulin‐dependent) diabetes mellitus in man-macrophages, lymphocytes, and interferon‐γ containing cells. The Journal of pathology, 1991; 165(2).97-103. [Crossref]  [PubMed] 
  16. Bazzaz JT, Amoli MM, Taheri Z, Larijani B, Pravica V et al. TNF-α and IFN-γ gene variation and genetic susceptibility to type 1 diabetes and its microangiopathic complications. J diabetic Metab Disord 2014;13:46-9. [Crossref]  [PubMed]  [PMC] 
  17. Stanley WJ, Trivedi PM, Sutherland AP, Thomas HE, Gurzov EN. Differential regulation of pro-inflammatory cytokine signalling by protein tyrosine phosphatases in pancreatic β-cells. Journal of molecular endocrinology. 2017 Nov 1;59(4):325-37. [Crossref]  [PubMed] 
  18. Schloot NC, Hanifi-Moghaddam P, Aabenhus-Andersen N, Alizadeh BZ, Saha MT et al. Association of immune mediators at diagnosis of Type 1 Diabetes with later clinical remission. Diabet Med. 2007 May ; 24(5):512-520. [Crossref]  [PubMed] 
  19. Kaas A, Pfleger C, Kharagjitsingh AV, Schloot NC, Hansen L et al. on behalf of the Hvidoere Study Group on Childhood Diabetes. Association between age, IL-10, IFN-γ, stimulated C-peptide and disease progression in children with newly diagnosed type 1 diabetes. Diabet Med. 2012 Jun; 29(6): 244-741. [Crossref]  [PubMed] 
  20. El Samahy MH, Adly AA, Ismail EA, Salah NY. Regulatory T cells with CD62L or TNFR2 expression in young type 1diabetic patients: relation to inflammation, glycemic control and micro-vascular complications. J Diabetes Complications 2015; 29(1):120-126. [Crossref]  [PubMed] 
  21. Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes care 2004; 27(3), 813-823. [Crossref]  [PubMed] 
  22. Hotamısligil GS, Peraldi P, Budavari A, Ellis R, White MF et al. IRS-1--mediated inhibitionof insulin receptor thyrosine kinase activity in TNF alpha- and obesity induced insulin resistance. Science 1996; 271:665-668. [Crossref]  [PubMed] 
  23. Qiao YC, Chen YL, Pan YH, Tian F, Xu Y, Zhang XX, Zhao HL. The change of serum tumor necrosis factor alpha in patients with type 1 diabetes mellitus: A systematic review and meta-analysis. PloS one. 2017;12(4). [Crossref]  [PubMed]  [PMC] 
  24. Buzzetti R, Zampetti S, Pozzilli P. Impact of obesity on the increasing incidence of type 1 diabetes. Diabetes, Obesity & Metabolism. 2020 Mar 10. [Crossref]  [PubMed] 
  25. Li CR, Mueller EE, Bradley LM. Islet antigen-spesific Th17 cells can induce TNF-α-dependent autoimmune diabetes. J Immunol 2014; 192(4):1425-1432. [Crossref]  [PubMed]  [PMC] 
  26. Hartemann A, Bourron O. Interleukin-2 and type 1 diabetes: New therapeutic perspectives. Diabetes and Metabolism 2012; 38:387-391. [Crossref]  [PubMed] 
  27. Chan SH, Perussia B, Gupta JW, Kobayashi M, Pospisil M et al. Induction of interferon gamma production by natural killer cell stimulatory factor: characterization of the responder cells and synergy with other inducers. Journal of Experimental Medicine, 1991;173(4), 869-879. [Crossref]  [PubMed]  [PMC] 
  28. Balkwill F. Tumor Necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev. 2002; 13:135-141. [Crossref]