ORIGINAL ARTICLE

MTHFR C677T Polymorphism in Turkish Women with Polycystic Ovary Syndrome
Polikistik Over Sendromlu Türk Kadınlarında MTHFR C677T Polimorfizmi
Received Date : 05 Sep 2020
Accepted Date : 10 Dec 2020
Available Online : 19 Jan 2021
Doi: 10.25179/tjem.2020-78794 - Makale Dili: EN
Turk J Endocrinol Metab. 2021;25:102-112
Bu makale, CC BY-NC-SA altında lisanslanmış açık erişim bir makaledir.
ABSTRACT
Objective: Polycystic ovary syndrome (PCOS) is one of the most common endocrine-reproductive-metabolic disorders of women reproductive age, affecting 5-15% of the women worldwide. Although the pathogenesis of PCOS is not well defined, it is associated with an increased risk of premature coronary artery disease (CAD). Hyperhomocysteinemia (HHcy) is associated with hyperlipidemia and is an independent risk factor for CAD. The most common cause of HHcy is related to the deficiency of methylenetetrahydrofolate reductase (MTHFR). This study aimed to investigate the relationship between different genotypes of MTHFR C677T and the risk of PCOS. Material and Methods: Two hundred twenty voluntary premenopausal women (110 healthy controls and 110 PCOS patients) were included in the study. All the volunteers underwent a physical examination along with biochemical hormonal evaluation and genetic analysis. Results: The genotyping analyses and genetic model of inheritance analyses revealed that the frequencies of CC, CT, and TT genotypes in the control and PCOS group to be 51.8%, 45.5%, and 2.7% and 51.8%, 48.2%, and 0%, respectively. The frequency of C and T alleles in the control and PCOS group was determined to be 74% (C: 0.74/155) and 26% (T: 0.26/53), and 75% (C: 0.75/167) and 25% (T: 0.25/53), respectively. The “T” additive, “T” dominant, and “C” recessive models it found that the CT vs. CC (OR:1.06 Cl:0.62-1.83), CC vs. TC+TT (OR: 0.99 Cl: 0.58-1.72), and TC+TT vs. CC (OR: 0.99 Cl: 0.58-1.70), respectively, did not show an increase in the PCOS risk. Conclusion: Our findings indicated that the different genotypes of MTHFR C677T were not associated with the risk of PCOS in Turkish women from Central Anatolia.
ÖZET
Amaç: Üreme çağındaki kadınların en yaygın endokrin-ürememetabolik bozukluklarından biri olan polikistik over sendromu (PKOS) dünya genelinde kadınların %5-15’ini etkilemektedir. PKOS patogenezi tam olarak tanımlanmamış olmasına rağmen, PKOS'un artmış erken koroner arter hastalığı (KAH) riski ile ilişkili olduğu bilinmektedir. Hiperhomosistenemi (HHcy), KAH için bağımsız bir risk faktörü olan hiperlipidemi ile ilişkili olup HHcy’in en yaygın nedeni metilentetrahidrofolat redüktaz (MTHFR) eksikliğidir. Bu çalışma ile MTHFR C677T polimorfizmi ve PKOS riski arasındaki ilişkinin araştırılması amaçlanmıştır. Gereç ve Yöntemler: Çalışmaya benzer yaşta iki yüz yirmi gönüllü premenopozal kadın (110 sağlıklı kontrol ve 110 PKOS hastası) dahil edilmiştir. Tüm gönüllülere fiziksel muayene, biyokimyasal hormon değerlendirme ve genetik analizler uygulanmıştır. Bulgular: Genotipleme ve genetik kalıtım model analizleri ile CC, CT ve TT genotip sıklığının kontrol ve PKOS gruplarında sırasıyla %51,8, %45,5, %2,7 ve %51,8, %48,2 ve %0 olarak bulunmuştur. C ve T allellerinin sıklığı sırasıyla kontrol ve PKOS gruplarında %74 (C: 0,74/155), %26 (T: 0,26/53) ve %75 (C: 0,75/167), %25 (T: 0,25/53) olarak belirlenmiştir. “T” editif modelde CT’ye göre CC (OR: 1,06 Cl: 0,62-1,83), “T” baskın modelde CC’ye göre TC+TT (OR: 0,99 Cl: 0,58-1,72) ve “C” çekinik modelde TC+TT’ye göre CC (OR: 0,99 Cl: 0,58-1,70) genotipine sahip olmanın PKOS riskini arttırmadığı belirlenmiştir. Sonuç: Mevcut çalışma ile MTHFR C677T genotiplerinin iç anadolu bölgesinde yaşayan Türk kadınlarında PKOS riski ile ilişkili olmadığı gösterilmiştir.
KAYNAKLAR
  1. Azziz R. Introduction: determinants of polycystic ovary syndrome. Fertil Steril. 2016;106:4-5.[PubMed] 
  2. Pasquali R, Gambineri A. New perspectives on the definition and management of polycystic ovary syndrome. J Endocrinol Invest. 2018;41:1123-1135.[Crossref] [PubMed] 
  3. Fauser BC, Tarlatzis BC, Rebar RW, Legro RS, Balen AH, Lobo R, Carmina E, Chang J, Yildiz BO, Laven JS, Boivin J, Petraglia F, Wijeyeratne CN, Norman RJ, Dunaif A, Franks S, Wild RA, Dumesic D, Barnhart K. Consensus on women's health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil Steril. 2012;97:28-38.e25.[Crossref] [PubMed] 
  4. Murri M, Luque-Ramírez M, Insenser M, Ojeda-Ojeda M, Escobar-Morreale HF. Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): a systematic review and meta-analysis. Hum Reprod Update. 2013;19:268-288.[Crossref] [PubMed] 
  5. Rashad NM, El-Shal AS, Abdelaziz AM. Association between inflammatory biomarker serum procalcitonin and obesity in women with polycystic ovary syndrome. J Reprod Immunol. 2013;97:232-239.[Crossref] [PubMed] 
  6. Behboudi-Gandevani S, Ramezani Tehrani F, Bidhendi Yarandi R, Noroozzadeh M, Hedayati M, Azizi F. The association between polycystic ovary syndrome, obesity, and the serum concentration of adipokines. J Endocrinol Invest. 2017;40:859-866.[Crossref] [PubMed] 
  7. Filippou P, Homburg R. Is foetal hyperexposure to androgens a cause of PCOS? Hum Reprod Update. 2017;1;23:421-432.[Crossref] [PubMed] 
  8. Merkin SS, Phy JL, Sites CK, Yang D. Environmental determinants of polycystic ovary syndrome. Fertil Steril. 2016;106:16-24.[Crossref] [PubMed] 
  9. Mykhalchenko K, Lizneva D, Trofimova T, Walker W, Suturina L, Diamond MP, Azziz R. Genetics of polycystic ovary syndrome. Expert Rev Mol Diagn. 2017;17:723-733.[Crossref] [PubMed] 
  10. Sóter MO, Ferreira CN, Sales MF, Candido AL, Reis FM, Milagres KS, Ronda C, Silva IO, Sousa MO, Gomes KB. Peripheral blood-derived cytokine gene polymorphisms and metabolic profile in women with polycystic ovary syndrome. Cytokine. 2015;76:227-235.[Crossref] [PubMed] 
  11. Branavan U, Muneeswaran K, Wijesundera S, Jayakody S, Chandrasekharan V, Wijeyaratne C. Identification of selected genetic polymorphisms in polycystic ovary syndrome in Sri Lankan women using low cost genotyping techniques. PLoS One. 2018;31;13:e0209830.[Crossref] [PubMed] [PMC] 
  12. Tang W, Wang Y, Jiang H, Liu C, Dong C, Chen S, Kang M, Gu H. Insulin receptor substrate-1 (IRS-1) rs1801278G>a polymorphism is associated with polycystic ovary syndrome susceptibility: a meta-analysis. Int J Clin Exp Med. 2015;15;8:17451-17460.[PubMed] [PMC] 
  13. Kim JJ, Choi YM, Hong MA, Chae SJ, Hwang K, Yoon SH, Ku SY, Suh CS, Kim SH. FSH receptor gene p. Thr307Ala and p. Asn680Ser polymorphisms are associated with the risk of polycystic ovary syndrome. J Assist Reprod Genet. 2017;34:1087-1093.[Crossref] [PubMed] [PMC] 
  14. Song X, Sun X, Ma G, Sun Y, Shi Y, Du Y, Chen ZJ. Family association study between melatonin receptor gene polymorphisms and polycystic ovary syndrome in Han Chinese. Eur J Obstet Gynecol Reprod Biol. 2015;195:108-112.[Crossref] [PubMed] 
  15. Polat S, Şimşek Y. Five variants of the superoxide dismutase genes in Turkish women with polycystic ovary syndrome. Free Radic Res. 2020;54:467-476.[Crossref] [PubMed] 
  16. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M, Kluijtmans LA, van den Heuvel LP, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10:111-113.[Crossref] [PubMed] 
  17. Huang L, Song XM, Zhu WL, Li Y. Plasma homocysteine and gene polymorphisms associated with the risk of hyperlipidemia in northern Chinese subjects. Biomed Environ Sci. 2008;21:514-520.[Crossref] [PubMed] 
  18. Refsum H, Ueland PM, Nygård O, Vollset SE. Homocysteine and cardiovascular disease. Annu Rev Med. 1998;49:31-62.[Crossref] [PubMed] 
  19. Hankey GJ, Eikelboom JW. Homocysteine and vascular disease. Indian Heart J. 2000;52:S18-26.[PubMed] 
  20. Giltay EJ, Hoogeveen EK, Elbers JM, Gooren LJ, Asscheman H, Stehouwer CD. Insulin resistance is associated with elevated plasma total homocysteine levels in healthy, non-obese subjects. Atherosclerosis. 1998;139:197-198.[PubMed] 
  21. Badawy A, State O, El Gawad SSA, El Aziz OA. Plasma homocysteine and polycystic ovary syndrome: the missed link. Eur J Obstet Gynecol Reprod Biol. 2007;131:68-72.[Crossref] [PubMed] 
  22. Ratnam S, Maclean KN, Jacobs RL, Brosnan ME, Kraus JP, Brosnan JT. Hormonal regulation of cystathionine beta-synthase expression in liver. J Biol Chem. 2002;8;277:42912-42918.[Crossref] [PubMed] 
  23. Harmon DL, Woodside JV, Yarnell JW, McMaster D, Young IS, McCrum EE, Gey KF, Whitehead AS, Evans AE. The common 'thermolabile' variant of methylene tetrahydrofolate reductase is a major determinant of mild hyperhomocysteinaemia. QJM. 1996;89:571-577.[Crossref] [PubMed] 
  24. Willmott M, Bartosik DB, Romanoff EB. The effect of folic acid on superovulation in the immature rat. J Endocrinol. 1968;41:439-445.[Crossref] [PubMed] 
  25. Stern LL, Mason JB, Selhub J, Choi SW. Genomic DNA hypomethylation, a characteristic of most cancers, is present in peripheral leukocytes of individuals who are homozygous for the C677T polymorphism in the methylenetetrahydrofolate reductase gene. Cancer Epidemiol Biomarkers Prev. 2000;9:849-853.[PubMed] 
  26. Blount BC, Mack MM, Wehr CM, MacGregor JT, Hiatt RA, Wang G, Wickramasinghe SN, Everson RB, Ames BN. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci U S A. 1997;1;94:3290-3295.[Crossref] [PubMed] [PMC] 
  27. Zhang X, Li H, Jin H, Ebin Z, Brodsky S, Goligorsky MS. Effects of homocysteine on endothelial nitric oxide production. Am J Physiol Renal Physiol. 2000;279:F671-678.[Crossref] [PubMed] 
  28. Starkebaum G, Harlan JM. Endothelial cell injury due to copper-catalyzed hydrogen peroxide generation from homocysteine. J Clin Invest. 1986;77:1370-1376.[Crossref] [PubMed] [PMC] 
  29. Poddar R, Sivasubramanian N, DiBello PM, Robinson K, Jacobsen DW. Homocysteine induces expression and secretion of monocyte chemoattractant protein-1 and interleukin-8 in human aortic endothelial cells: implications for vascular disease. Circulation. 2001;5;103:2717-2723.[Crossref] [PubMed] 
  30. Mohanty D, Das KC. Effect of folate deficiency on the reproductive organs of female rhesus monkeys: a cytomorphological and cytokinetic study. J Nutr. 1982;112:1565-1576.[Crossref] [PubMed] 
  31. Szymański W, Kazdepka-Ziemińska A. [Effect of homocysteine concentration in follicular fluid on a degree of oocyte maturity]. Ginekol Pol. 2003;74:1392-1396.[PubMed] 
  32. Loscalzo J. The oxidant stress of hyperhomocyst(e)inemia. J Clin Invest. 1996;1;98:5-7.[Crossref] [PubMed] [PMC] 
  33. van der Put NM, Gabreëls F, Stevens EM, Smeitink JA, Trijbels FJ, Eskes TK, van den Heuvel LP, Blom HJ. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet. 1998;62:1044-1051.[Crossref] [PubMed] [PMC] 
  34. Xiong Y, Bian C, Lin X, Wang X, Xu K, Zhao X. Methylenetetrahydrofolate reductase gene polymorphisms in the risk of polycystic ovary syndrome and ovarian cancer. Biosci Rep. 2020;31;40:BSR20200995.[Crossref] [PubMed] [PMC] 
  35. Gong JM, Shen Y, Shan WW, He YX. The association between MTHFR polymorphism and cervical cancer. Sci Rep. 2018;8;8:7244.[Crossref] [PubMed] [PMC] 
  36. Carlus SJ, Sarkar S, Bansal SK, Singh V, Singh K, Jha RK, Sadasivam N, Sadasivam SR, Gireesha PS, Thangaraj K, Rajender S. Is MTHFR 677 C>T polymorphism clinically important in polycystic ovarian syndrome (pcos)? a case-control study, meta-analysis and trial sequential analysis. PLoS One. 2016;16;11:e0151510.[Crossref] [PubMed] [PMC] 
  37. Zhu X, Hong X, Chen L, Xuan Y, Huang K, Wang B. Association of methylenetetrahydrofolate reductase C677T and A1298C polymorphisms with genetic susceptibility to polycystic ovary syndrome: A PRISMA-compliant meta-analysis. Gene. 2019;30;719:144079.[Crossref] [PubMed] 
  38. Xu L, Qin Z, Wang F, Si S, Li L, Lin P, Han X, Cai X, Yang H, Gu Y. Methylenetetrahydrofolate reductase C677T polymorphism and colorectal cancer susceptibility: a meta-analysis. Biosci Rep. 2017;7;37:BSR20170917.[Crossref] [PubMed] [PMC] 
  39. Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, Janssen OE, Legro RS, Norman RJ, Taylor AE, Witchel SF; Task Force on the Phenotype of the Polycystic Ovary Syndrome of The Androgen Excess and PCOS Society. The androgen excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertil Steril. 2009;91:456-488.[Crossref] [PubMed] 
  40. Hatch R, Rosenfield RL, Kim MH, Tredway D. Hirsutism: implications, etiology, and management. Am J Obstet Gynecol. 1981;1;140:815-830.[Crossref] [PubMed] 
  41. Bonora E, Targher G, Alberiche M, Bonadonna RC, Saggiani F, Zenere MB, Monauni T, Muggeo M. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care. 2000;23:57-63.[Crossref] [PubMed] 
  42. Lin S, Huiya Z, Bo L, Wei W, Yongmei G. The plasminogen activator inhibitor-1 (PAI-1) gene -844 A/G and -675 4G/5G promoter polymorphism significantly influences plasma PAI-1 levels in women with polycystic ovary syndrome. Endocrine. 2009;36:503-9.[Crossref] [PubMed] 
  43. Unsal T, Konac E, Yesilkaya E, Yilmaz A, Bideci A, Ilke Onen H, Cinaz P, Menevse A. Genetic polymorphisms of FSHR, CYP17, CYP1A1, CAPN10, INSR, SERPINE1 genes in adolescent girls with polycystic ovary syndrome. J Assist Reprod Genet. 2009;26:205-216.[Crossref] [PubMed] [PMC] 
  44. Prapas N, Karkanaki A, Prapas I, Kalogiannidis I, Katsikis I, Panidis D. Genetics of polycystic ovary syndrome. Hippokratia. 2009;13:216-223.[PubMed] [PMC] 
  45. Polat S, Karaburgu S, Unluhizarci K, Dündar M, Özkul Y, Arslan YK, Karaca Z, Kelestimur F. The role of androgen receptor CAG repeat polymorphism in androgen excess disorder and idiopathic hirsutism. J Endocrinol Invest. 2020;43:1271-1281.[Crossref] [PubMed] 
  46. Polat S, Karaburgu S, Ünlühizarcı K, Dündar M, Özkul Y, Arslan YK, Karaca Z, Kelestimur F. Comprehensive genotyping of Turkish women with hirsutism. J Endocrinol Invest. 2019;42:1077-1087.[Crossref] [PubMed] 
  47. Tran P, Leclerc D, Chan M, Pai A, Hiou-Tim F, Wu Q, Goyette P, Artigas C, Milos R, Rozen R. Multiple transcription start sites and alternative splicing in the methylenetetrahydrofolate reductase gene result in two enzyme isoforms. Mamm Genome. 2002;13:483-492.[Crossref] [PubMed] 
  48. Liew SC, Gupta ED. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases. Eur J Med Genet. 2015;58:1-10.[Crossref] [PubMed] 
  49. Gudnason V, Stansbie D, Scott J, Bowron A, Nicaud V, Humphries S. C677T (thermolabile alanine/valine) polymorphism in methylenetetrahydrofolate reductase (MTHFR): its frequency and impact on plasma homocysteine concentration in different European populations. EARS group. Atherosclerosis. 1998;136:347-354.[Crossref] [PubMed] 
  50. Kang SS, Zhou J, Wong PW, Kowalisyn J, Strokosch G. Intermediate homocysteinemia: a thermolabile variant of methylenetetrahydrofolate reductase. Am J Hum Genet. 1988;43:414-421.[PubMed] [PMC] 
  51. Motulsky AG. Nutritional ecogenetics: homocysteine-related arteriosclerotic vascular disease, neural tube defects, and folic acid. Am J Hum Genet. 1996;58:17-20. Erratum in: Am J Hum Genet 1996;58:648.[PubMed] [PMC] 
  52. Kang SS, Wong PW, Susmano A, Sora J, Norusis M, Ruggie N. Thermolabile methylenetetrahydrofolate reductase: an inherited risk factor for coronary artery disease. Am J Hum Genet. 1991;48:536-545.[PubMed] [PMC] 
  53. Engbersen AM, Franken DG, Boers GH, Stevens EM, Trijbels FJ, Blom HJ. Thermolabile 5,10-methylenetetrahydrofolate reductase as a cause of mild hyperhomocysteinemia. Am J Hum Genet. 1995;56:142-150.[PubMed] [PMC] 
  54. Karadeniz M, Erdogan M, Zengi A, Eroglu Z, Tamsel S, Olukman M, Saygili F, Yilmaz C. Methylenetetrahydrofolate reductase C677T gene polymorphism in Turkish patients with polycystic ovary syndrome. Endocrine. 2010;38:127-133.[Crossref] [PubMed] 
  55. Kim JJ, Choi YM. Phenotype and genotype of polycystic ovary syndrome in Asia: ethnic differences. J Obstet Gynaecol Res. 2019;45:2330-2337.[Crossref] [PubMed] 
  56. Williamson K, Gunn AJ, Johnson N, Milsom SR. The impact of ethnicity on the presentation of polycystic ovarian syndrome. Aust N Z J Obstet Gynaecol. 2001;41:202-206.[Crossref] [PubMed] 
  57. Bayraktar F, Dereli D, Ozgen AG, Yilmaz C. Plasma homocysteine levels in polycystic ovary syndrome and congenital adrenal hyperplasia. Endocr J. 2004;51:601-608.[Crossref] [PubMed]