ORIGINAL ARTICLE

Metabolic Age: A New Predictor for Metabolic Syndrome
Metabolik Yaş: Metabolik Sendrom İçin Yeni Bir Öngördürücü
Received Date : 26 Sep 2020
Accepted Date : 27 Nov 2020
Available Online : 19 Jan 2021
Doi: 10.25179/tjem.2020-79234 - Makale Dili: EN
Turk J Endocrinol Metab. 2021;25:78-86
Bu makale, CC BY-NC-SA altında lisanslanmış açık erişim bir makaledir.
ABSTRACT
Objective: This study aimed to investigate the prevalence of metabolic syndrome (MetS) among the employees of the Tehran University of Medical Sciences, along with presenting a predictor for its identification. Material and Methods: 1583 employees from the Tehran University of Medical Sciences (TUMS) participated in our cross-sectional study, who were originally a part of the enrollment phase in the TUMS Employees’ Cohort study (TEC). Their basic information, physical activity questionnaire, biochemical blood test, and body composition were obtained through the Bioelectrical Impedance Analysis (BIA), blood pressure, anthropometric measurements, and history of diseases and medication. The prevalence of MetS was determined according to the criteria of the International Diabetes Federation (IDF) and the National Cholesterol Education Program (NCEP) Adult Treatment Panel-III (ATP-III). Result: According to the criteria of the IDF, the prevalence of MetS among total participants was 22.2%, where 21.9% were men and 22.4% were women. According to the criteria of ATP-III, the prevalence of MetS was found to be 15%. The prevalence of obesity (BMI≥30) and hyperglycemia (FBS ≥100 mg/dL) among the study participants was 23.4% and 9.7%, respectively. The prevalence of hypertension (SBP ≥130, DBP ≥85 mmHg) and high triglyceride level (TG ≥150 mg/dL) was found to be 14.6% and 19.6%, respectively, while the prevalence of reduced high-density lipoprotein in men and women was found to be 40.3% and 74.7%, respectively.Logistic regression analysis revealed that the predictors of metabolic syndrome were age, sex, physique rate (the evaluated levels of muscle and body fat), and metabolic age (where the BMR of a person was compared to the mean of the BMR of the same age group). Conclusion: This study introduces metabolic age as a new predictor of MetS. However, more studies are needed to confirm this association.
ÖZET
Amaç: Bu çalışmada, Tahran Tıp Bilimleri Üniversitesi çalışanları arasında metabolik sendrom (MetS) prevalansını araştırmak ve tanımlanması için bir öngördürücü sunmak amaçlanmıştır. Gereç ve Yöntemler: Bu kesitsel çalışmaya, Tahran Tıp Bilimleri Üniversitesi [Tehran University of Medical Sciences (TUMS)]’nden 1583 çalışan katıldı, bu kişiler aslında TUMS Çalışanları Kohort çalışması [TUMS Employees’ Cohort study (TEC)]nın kayıt aşamasına dâhildi. Temel bilgileri, fiziksel aktivite anketi, biyokimyasal kan testi ve vücut kompozisyonu Biyoelektrik Empedans Analizi [Bioelectrical Impedance Analysis (BIA)], kan basıncı, antropometrik ölçümler ve hastalık ve ilaç öyküsü aracılığıyla elde edildi. MetS prevalansı, Uluslararası Diyabet Federasyonu [International Diabetes Federation (IDF)] ve Ulusal Kolesterol Eğitim Programı Yetişkin Tedavi Paneli-III [National Cholesterol Education Program Adult Treatment Panel-III (NCEP ATP-III)] kriterlerine göre belirlendi. Bulgular: IDF kriterlerine göre toplam katılımcılar arasında MetS prevalansı %22,2 idi ve %21,9’u erkek, %22,4’ü kadındı. ATP-III kriterlerine göre MetS prevalansı %15 olarak bulundu. Çalışma katılımcıları arasında obezite (BKİ ≥30) ve hiperglisemi (AKŞ ≥100 mg/dL) prevalansı sırasıyla %23,4 ve %9,7 idi. Hipertansiyon (SKB ≥130 mmHg, DKB ≥85 mmHg) ve yüksek trigliserid düzeyi (TG ≥150 mg/dL) prevalansı sırasıyla %14,6 ve %19,6 olarak bulunurken, erkeklerde ve kadınlarda düşük yoğunluklu lipoprotein prevalansı sırasıyla %40,3 ve %74,7 bulundu. Lojistik regresyon analizi, Mets’in öngördürücülerinin yaş, cinsiyet, vücut oranı (değerlendirilen kas ve vücut yağı seviyeleri) ve metabolik yaş [kişinin bazal metabolizma hızının (BMR) aynı yaş grubundakilerin BMR ortalamasıyla karşılaştırılması] olduğunu ortaya koydu. Sonuç: Bu çalışma, metabolik yaşın MetS için yeni bir öngördürücü olduğunu ortaya koymaktadır. Ancak, bu ilişkiyi doğrulamak için daha fazla çalışmaya ihtiyaç vardır.
KAYNAKLAR
  1. Grundy SM. Metabolic syndrome: a multiplex cardiovascular risk factor. J Clin Endocrinol Metab. 2007;92:399-404.[Crossref] [PubMed] 
  2. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA. 2001;285:2486-2497.[Crossref] [PubMed] 
  3. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC Jr, Spertus JA, Costa F; American Heart Association; National Heart, Lung, and Blood Institute. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112:2735-2752. Erratum in: Circulation. 2005;112:e297. Erratum in: Circulation. 2005;112:e298.[Crossref] [PubMed] 
  4. Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018;20:12.[Crossref] [PubMed] [PMC] 
  5. Bonora E, DeFronzo RA. Diabetes Complications, Comorbidities and Related Disorders (1st ed). Cham; Springer; 2018;1-726.[Crossref] 
  6. Dalvand S, Niksima SH, Meshkani R, Ghanei Gheshlagh R, Sadegh-Nejadi S, Kooti W, Parizad N, Zahednezhad H, Afrisham R. Prevalence of metabolic syndrome among iranian population: a systematic review and meta-analysis. Iran J Public Health. 2017;46:456-467.[PubMed] [PMC] 
  7. das Merces MC, Santana AIC, Lua I, da Silva DAR, E Silva DS, Gomes AMT, Miranda MCDM, Barbosa CDS, Magalhães LBNC, Coelho JMF, Servo MLS, Portella DDA, de Souza MC, Lago SB, Araújo EMQ, Marques SC, Figueiredo VP, D'Oliveira Júnior A. Metabolic syndrome among primary health care nursing professionals: a cross-sectional population-based study. Int J Environ Res Public Health. 2019;16:2686.[Crossref] [PubMed] [PMC] 
  8. Narisada A, Suzuki K. Association between procrastination, white-collar work and obesity in Japanese male workers: a cross-sectional study. BMJ Open. 2019;9:e029931.[Crossref] [PubMed] [PMC] 
  9. Jeong HS. The relationship between workplace environment and metabolic syndrome. Int J Occup Environ Med. 2018;9:176-183.[Crossref] [PubMed] [PMC] 
  10. Adejumo EN, Adejumo AO, Azenabor A, Ekun AO, Enitan SS, Adebola OK, Ogundahunsi OA. Anthropometric parameter that best predict metabolic syndrome in South west Nigeria. Diabetes Metab Syndr. 2019;13:48-54.[Crossref] [PubMed] 
  11. Ofori-Asenso R, Agyeman AA, Laar A. Metabolic syndrome in apparently "healthy" Ghanaian adults: a systematic review and meta-analysis. Int J Chronic Dis. 2017;2017:2562374.[Crossref] [PubMed] [PMC] 
  12. Mentoor I, Kruger M, Nell T. Metabolic syndrome and body shape predict differences in health parameters in farm working women. BMC Public Health. 2018;18:453.[Crossref] [PubMed] [PMC] 
  13. Cuschieri S, Vassallo J, Calleja N, Pace N, Mamo J. The effect of age, gender, TG/HDL-C ratio and behavioral lifestyles on the metabolic syndrome in the high risk Mediterranean Island population of Malta. Diabetes Metab Syndr. 2017;11:S321-S327.[Crossref] [PubMed] 
  14. Chen BD, Yang YN, Ma YT, Pan S, He CH, Liu F, Ma X, Fu ZY, Li XM, Xie X, Zheng YY. Waist-to-height ratio and triglycerides/high-density lipoprotein cholesterol were the optimal predictors of metabolic syndrome in Uighur men and women in Xinjiang, China. Metab Syndr Relat Disord. 2015;13:214-220.[Crossref] [PubMed] 
  15. Cheong KC, Ghazali SM, Hock LK, Subenthiran S, Huey TC, Kuay LK, Mustapha FI, Yusoff AF, Mustafa AN. The discriminative ability of waist circumference, body mass index and waist-to-hip ratio in identifying metabolic syndrome: Variations by age, sex and race. Diabetes Metab Syndr. 2015;9:74-78.[Crossref] [PubMed] 
  16. Yu TY, Jee JH, Bae JC, Jin SM, Baek JH, Lee MK, Kim JH. Serum uric acid: a strong and independent predictor of metabolic syndrome after adjusting for body composition. Metabolism. 2016;65:432-440.[Crossref] [PubMed] 
  17. Haghighatdoost F, Sarrafzadegan N, Mohammadifard N, Asgary S, Boshtam M, Azadbakht L. Assessing body shape index as a risk predictor for cardiovascular diseases and metabolic syndrome among Iranian adults. Nutrition. 2014;30:636-644.[Crossref] [PubMed] 
  18. Nedjat S, Mehrdad R, Yunesian M, Pouragha H, Biagi V, Monazzam-Esmaeelpour MR. Prospective cohort study on the social determinants of health: Tehran University of Medical Sciences employees' cohort (TEC) study protocol. BMC Public Health. 2020;20:1703.[Crossref] [PubMed] [PMC] 
  19. Kuriyan R. Body composition techniques. Indian J Med Res. 2018;148:648-658.[Crossref] [PubMed] [PMC] 
  20. Khalil SF, Mohktar MS, Ibrahim F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors (Basel). 2014;14:10895-10928.[Crossref] [PubMed] [PMC] 
  21. Vasheghani-Farahani A, Tahmasbi M, Asheri H, Ashraf H, Nedjat S, Kordi R. The Persian, last 7-day, long form of the International Physical Activity Questionnaire: translation and validation study. Asian J Sports Med. 2011;2:106-116.[Crossref] [PubMed] [PMC] 
  22. Vidigal Fde C, Ribeiro AQ, Babio N, Salas-Salvadó J, Bressan J. Prevalence of metabolic syndrome and pre-metabolic syndrome in health professionals: LATINMETS Brazil study. Diabetol Metab Syndr. 2015;7:6.[Crossref] [PubMed] [PMC] 
  23. Khosravipour M, Shahmohammadi M, Athar HV. The effects of rotating and extended night shift work on the prevalence of metabolic syndrome and its components. Diabetes Metab Syndr. 2019;13:3085-3089.[Crossref] [PubMed] 
  24. Niazi E, Saraei M, Aminian O, Izadi N. Frequency of metabolic syndrome and its associated factors in health care workers. Diabetes Metab Syndr. 2019;13:338-342.[Crossref] [PubMed] 
  25. Adeoye AM, Adewoye IA, Dairo DM, Adebiyi A, Lackland DT, Ogedegbe G, Tayo BO. Excess metabolic syndrome risks among women health workers compared with men. J Clin Hypertens (Greenwich). 2015;17:880-884.[Crossref] [PubMed] [PMC] 
  26. Garrido RA, Semeraro MB, Temesgen SM, Simi MR. Metabolic syndrome and obesity among workers at Kanye Seventh-Day Adventist Hospital, Botswana. S Afr Med J. 2009;99:331-334.[PubMed] 
  27. Hidaka T, Hayakawa T, Kakamu T, Kumagai T, Hiruta Y, Hata J, Tsuji M, Fukushima T. Prevalence of metabolic syndrome and its components among Japanese workers by Clustered Business Category. PLoS One. 2016;11:e0153368.[Crossref] [PubMed] [PMC] 
  28. Li R, Li W, Lun Z, Zhang H, Sun Z, Kanu JS, Qiu S, Cheng Y, Liu Y. Prevalence of metabolic syndrome in Mainland China: a meta-analysis of published studies. BMC Public Health. 2016;16:296.[Crossref] [PubMed] [PMC] 
  29. Ledesma M, Hurtado-Roca Y, Leon M, Giraldo P, Pocovi M, Civeira F, Guallar E, Ordovas JM, Casasnovas JA, Laclaustra M. Association of ferritin elevation and metabolic syndrome in males. Results from the Aragon Workers' Health Study (AWHS). J Clin Endocrinol Metab. 2015;100:2081-2089.[Crossref] [PubMed] 
  30. Strauß M, Foshag P, Przybylek B, Horlitz M, Lucia A, Sanchis-Gomar F, Leischik R. Occupation and metabolic syndrome: is there correlation? A cross sectional study in different work activity occupations of German firefighters and office workers. Diabetol Metab Syndr. 2016;8:57.[Crossref] [PubMed] [PMC] 
  31. Grundy SM. Metabolic syndrome update. Trends Cardiovasc Med. 2016;26:364-373.[Crossref] [PubMed] 
  32. Engin A. The definition and prevalence of obesity and metabolic syndrome. In: Engin AB, Engin A, eds. Obesity and Lipotoxicity (1st ed). Cham; Springer; 2017;1-17.[Crossref] [PubMed] 
  33. Ritchie SA, Connell JM. The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr Metab Cardiovasc Dis. 2007;17:319-326.[Crossref] [PubMed] 
  34. Paley CA, Johnson MI. Abdominal obesity and metabolic syndrome: exercise as medicine? BMC Sports Sci Med Rehabil. 2018;10:7.[Crossref] [PubMed] [PMC] 
  35. Engin AB, Engin A. Obesity and Lipotoxicity (1st ed). Cham; Springer; 2017;1-624.[Crossref] [PubMed] 
  36. Ghadge AA, Khaire AA. Leptin as a predictive marker for metabolic syndrome. Cytokine. 2019;121:154735.[Crossref] [PubMed] 
  37. Gascuena R, Gomez Paredes L, Munoz Gutierrez J, Mendiguren JM, Calderon L, Cogollos M, Lledo C. Improvement in metabolic profile, metabolic age, and body composition by a diet and exercise programme for obese and overweighted young adults. European Heart Journal. 2017;38:3432.[Crossref] 
  38. Henry C. Mechanisms of changes in basal metabolism during ageing. European journal of clinical nutrition. 2000;54:S77-S91.[Crossref] [PubMed] 
  39. Hertel J, Friedrich N, Wittfeld K, Pietzner M, Budde K, Van der Auwera S, Lohmann T, Teumer A, Völzke H, Nauck M, Grabe HJ. Measuring Biological Age via Metabonomics: The Metabolic Age Score. J Proteome Res. 2016;15:400-410.[Crossref] [PubMed] 
  40. Carter JEL. Part 1: The Heath-Carter Anthropometric Somatotype-Instruction Manual. 2002:3-4. (Date of access: 31.1.2013)[Link] 
  41. Owolabi LF, Adebisi SS, Danborno B, Buraimoh AA. Comparative evaluation of body composition analysis in type-2 diabetes mellitus patients and healthy Nigerians using bioelectric impedance analysis technique. Nigerian Journal of Basic and Clinical Sciences. 2016;13:13-18.[Crossref]