REVIEW

Dealing with COVID-19: Through Endocrinologist’s Eyes
Endokrinologların Gözüyle COVID-19 ile Mücadele
Received Date : 27 Jul 2020
Accepted Date : 10 Nov 2020
Available Online : 10 Dec 2020
Doi: 10.25179/tjem.2020-78280 - Makale Dili: EN
Turk J Endocrinol Metab. 2020;24:335-42
Bu makale, CC BY-NC-SA altında lisanslanmış açık erişim bir makaledir.
ABSTRACT
Less than a year ago, none of us had heard of novel coronavirus disease (COVID-19). Today, it has become the main topic of our daily conversations. This disastrous disease has united the medical professions belonging to various specialties to fight against the disease in collaboration. However, the exact role of endocrinologists still remains elusive. The coronavirus could potentially infect organs other than the lungs, such as the pancreas, thyroid, adrenal glands, and pituitary, as reflected by various endocrinological manifestations. The direct invasion of organ systems and indirect mechanisms such as induction of autoimmunity could be responsible for the endocrinological consequences. A large body of literature on its pathophysiology, management, and associated conditions is growing, and its association with endocrinological diseases is increasingly being recognized. However, data that would guide the proper management of these endocrinological disorders during this novel pandemic are still lacking. This review presented a brief overview of the association of COVID-19 with endocrinological diseases and methods to ease the management of some frequently encountered endocrinological problems.
ÖZET
Bir yıldan az bir süre önce hiçbirimiz yeni koronavirüs hastalığı (COVID-19) hakkında fikir sahibi değildik. Günümüzde ise bu hastalık hayatımızın merkezine yerleşmiş vaziyette. Virüsle mücadele için çeşitli uzmanlık branşlarından hekimler bir araya geldiler. Bu topkeyün savaşta endokrinologlara düşen spesifik görevler henüz net değildir. Koronavirüs akciğer dışında pankreas, tiroid, hipofiz bezi ve adrenal bezler gibi endokrin sisteme ait organlara da hasar vererek endokrinolojik semptom ve bulgulara yol açabilir. Endokrinolojik manifestasyonların altında yatan muhtemel mekanizma organ sistemlerinin virüs tarafından invazyonu ve otoimmünitenin tetiklenmesi ile açıklanabilir. COVID-19’un patofizyolojisi, tedavisi ve eşlik eden komorbititeler hakkında literatür günden güne zenginleşmekte, virüsün endokrinolojik hastalıklar ile olan ilişkilerine ait farkındalık artmaktadır. Buna karşın pandeminin seyrinde rastlanan endokrinolojik problemlerin akılcı yönetimi aydınlatılmaya muhtaçtır. Bu derleme COVID-19 ile endokrinolojik hastalıkların arasındaki ilişkiye ışık tutmak ve COVID-19 seyrinde sıkça rastlanılan endokrinolojik hastalıkların tedavisine yol göstermek amacıyla yazıldı.
KAYNAKLAR
  1. Singh AK, Gupta R, Ghosh A, Misra A. Diabetes in COVID-19: Prevalence, pathophysiology, prognosis and practical considerations. Diabetes Metab Syndr. 2020;14:303-310. [Crossref]  [PubMed]  [PMC] 
  2. Chan-Yeung M, Xu RH. SARS: epidemiology. Respirology. 2003;8:S9-S14. [Crossref]  [PubMed]  [PMC] 
  3. Morra ME, Van Thanh L, Kamel MG, Ghazy AA, Altibi AMA, Dat LM, Thy TNX, Vuong NL, Mostafa MR, Ahmed SI, Elabd SS, Fathima S, Le Huy Vu T, Omrani AS, Memish ZA, Hirayama K, Huy NT. Clinical outcomes of current medical approaches for Middle East respiratory syndrome: a systematic review and meta-analysis. Rev Med Virol. 2018;28:e1977. [Crossref]  [PubMed]  [PMC] 
  4. Yang JK, Feng Y, Yuan MY, Yuan SY, Fu HJ, Wu BY, Sun GZ, Yang GR, Zhang XL, Wang L, Xu X, Xu XP, Chan JC. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet Med. 2006;23:623-628. [Crossref]  [PubMed] 
  5. Allard R, Leclerc P, Tremblay C, Tannenbaum TN. Diabetes and the severity of pandemic influenza A (H1N1) infection. Diabetes Care. 2010;33:1491-1493. [Crossref]  [PubMed]  [PMC] 
  6. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS; China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708-1720. [Crossref]  [PubMed]  [PMC] 
  7. Rhee EJ, Kim JH, Moon SJ, Lee WY. Encountering COVID-19 as endocrinologists. Endocrinol Metab (Seoul). 2020;35:197-205. [Crossref]  [PubMed]  [PMC] 
  8. Gentile S, Strollo F, Ceriello A. COVID-19 infection in Italian people with diabetes: Lessons learned for our future (an experience to be used). Diabetes Res Clin Pract. 2020;162:108137. [Crossref]  [PubMed]  [PMC] 
  9. Iacobellis G. COVID-19 and diabetes: can DPP4 inhibition play a role? Diabetes Res Clin Pract. 2020;162:108125. [Crossref]  [PubMed]  [PMC] 
  10. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020;8(4):e21. [Crossref]  [PubMed]  [PMC] 
  11. Liu F, Long X, Zhang B, Zhang W, Chen X, Zhang Z. ACE2 expression in pancreas may cause pancreatic damage after SARS-CoV-2 infection. Clin Gastroenterol Hepatol. 2020;18:2128-2130. [Crossref]  [PubMed]  [PMC] 
  12. Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010;47:193-199. [Crossref]  [PubMed]  [PMC] 
  13. Pal R, Banerjee M. COVID-19 and the endocrine system: exploring the unexplored. J Endocrinol Invest. 2020;43:1027-1031. [Crossref]  [PubMed]  [PMC] 
  14. Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, Ji R, Wang H, Wang Y, Zhou Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91-95. [Crossref]  [PubMed]  [PMC] 
  15. Puig-Domingo M, Marazuela M, Giustina A. COVID-19 and endocrine diseases. A statement from the European Society of Endocrinology. Endocrine. 2020;68:2-5. [Crossref]  [PubMed]  [PMC] 
  16. Bassendine MF, Bridge SH, McCaughan GW, Gorrell MD. COVID-19 and comorbidities: a role for dipeptidyl peptidase 4 (DPP4) in disease severity? J Diabetes. 2020;12:649-658. [Crossref]  [PubMed] 
  17. Kajiwara C, Kusaka Y, Kimura S, Yamaguchi T, Nanjo Y, Ishii Y, Udono H, Standiford TJ, Tateda K. Metformin mediates protection against Legionella pneumonia through activation of AMPK and mitochondrial reactive oxygen species. J Immunol. 2018;200:623-631. [Crossref]  [PubMed] 
  18. Hariyanto TI, Kurniawan A. Metformin use is associated with reduced mortality rate from coronavirus disease 2019 (COVID-19) infection. Obes Med. 2020;19:100290. [Crossref]  [PubMed]  [PMC] 
  19. Pal R, Bhansali A. COVID-19, diabetes mellitus and ACE2: the conundrum. Diabetes Res Clin Pract. 2020;162:108132. [Crossref]  [PubMed]  [PMC] 
  20. Gorricho J, Garjón J, Alonso A, Celaya MC, Saiz LC, Erviti J, López A. Use of oral antidiabetic agents and risk of community-acquired pneumonia: a nested case-control study. Br J Clin Pharmacol. 2017;83:2034-2044. [Crossref]  [PubMed]  [PMC] 
  21. Prattichizzo F, La Sala L, Rydén L, Marx N, Ferrini M, Valensi P, Ceriello A. Glucose-lowering therapies in patients with type 2 diabetes and cardiovascular diseases. Eur J Prev Cardiol. 2019;26:73-80. [Crossref]  [PubMed] 
  22. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054-1062. [Crossref]  [PubMed]  [PMC] 
  23. Valencia I, Peiró C, Lorenzo Ó, Sánchez-Ferrer CF, Eckel J, Romacho T. DPP4 and ACE2 in diabetes and COVID-19: therapeutic targets for cardiovascular complications? Frontiers in Pharmacology. 2020;11:1161. [Crossref]  [PubMed]  [PMC] 
  24. Raj VS, Mou H, Smits SL, Dekkers DH, Müller MA, Dijkman R, Muth D, Demmers JA, Zaki A, Fouchier RA, Thiel V, Drosten C, Rottier PJ, Osterhaus AD, Bosch BJ, Haagmans BL. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013;495:251-254. [Crossref]  [PubMed]  [PMC] 
  25. Yang W, Cai X, Han X, Ji L. DPP-4 inhibitors and risk of infections: a meta-analysis of randomized controlled trials. Diabetes Metab Res Rev. 2016;32:391-404. [Crossref]  [PubMed] 
  26. Amin EF, Rifaai RA, Abdel-Latif RG. Empagliflozin attenuates transient cerebral ischemia/reperfusion injury in hyperglycemic rats via repressing oxidative-inflammatory-apoptotic pathway. Fundam Clin Pharmacol. 2020;34:548-558. [Crossref]  [PubMed] 
  27. Ceriello A. Thiazolidinediones as anti-inflammatory and anti-atherogenic agents. Diabetes Metab Res Rev. 2008;24:14-26. [Crossref]  [PubMed] 
  28. Diaz JH. Hypothesis: angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may increase the risk of severe COVID-19. J Travel Med. 2020;27:taaa041. [Crossref]  [PubMed]  [PMC] 
  29. Mehta N, Kalra A, Nowacki AS, Anjewierden S, Han Z, Bhat P, Carmona-Rubio AE, Jacob M, Procop GW, Harrington S, Milinovich A, Svensson LG, Jehi L, Young JB, Chung MK. Association of use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers with testing positive for coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5:1020-1026. [Crossref]  [PubMed]  [PMC] 
  30. Pettit NN, MacKenzie EL, Ridgway JP, Pursell K, Ash D, Patel B, Pho MT. Obesity is associated with increased risk for mortality among hospitalized patients with COVID-19. Obesity (Silver Spring). 2020;28:1806-1810. [Crossref]  [PubMed]  [PMC] 
  31. Huang Y, Lu Y, Huang YM, Wang M, Ling W, Sui Y, Zhao HL. Obesity in patients with COVID-19: a systematic review and meta-analysis. Metabolism. 2020;113:154378. [Crossref]  [PubMed]  [PMC] 
  32. Zhang X, Zheng J, Zhang L, Liu Y, Chen GP, Zhang HP, Wang L, Kang Y, Wood LG, Wang G. Systemic inflammation mediates the detrimental effects of obesity on asthma control. Allergy Asthma Proc. 2018;39:43-50. [Crossref]  [PubMed] 
  33. Muscogiuri G, Pugliese G, Barrea L, Savastano S, Colao A. Commentary: obesity: the "Achilles heel" for COVID-19? Metabolism. 2020;108:154251. [Crossref]  [PubMed]  [PMC] 
  34. Curtis BR. Non-chemotherapy drug-induced neutropenia: key points to manage the challenges. Hematology Am Soc Hematol Educ Program. 2017;2017:187-193. [Crossref]  [PubMed]  [PMC] 
  35. Boelaert K, Visser WE, Taylor PN, Moran C, Léger J, Persani L. Endocrinology in the time of COVID-19: management of hyperthyroidism and hypothyroidism. Eur J Endocrinol. 2020;183:G33-G39. [Crossref]  [PubMed] 
  36. Terpos E, Ntanasis-Stathopoulos I, Elalamy I, Kastritis E, Sergentanis TN, Politou M, Psaltopoulou T, Gerotziafas G, Dimopoulos MA. Hematological findings and complications of COVID-19. Am J Hematol. 2020;95:834-847. [Crossref]  [PubMed]  [PMC] 
  37. Fliers E, Bianco AC, Langouche L, Boelen A. Thyroid function in critically ill patients. Lancet Diabetes Endocrinol. 2015;3:816-825. [Crossref]  [PubMed]  [PMC] 
  38. Dworakowska D, Grossman AB. Thyroid disease in the time of COVID-19. Endocrine. 2020;68:471-474. [Crossref]  [PubMed]  [PMC] 
  39. Nishihara E, Ohye H, Amino N, Takata K, Arishima T, Kudo T, Ito M, Kubota S, Fukata S, Miyauchi A. Clinical characteristics of 852 patients with subacute thyroiditis before treatment. Intern Med. 2008;47:725-729. [Crossref]  [PubMed] 
  40. WHO. Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected: interim guidance, 13 March 2020. World Health Organization; 2020. [Link] 
  41. Brancatella A, Ricci D, Cappellani D, Viola N, Sgrò D, Santini F, Latrofa F. Is subacute thyroiditis an underestimated manifestation of SARS-CoV-2 infection? Insights from a case series. J Clin Endocrinol Metab. 2020;105:dgaa537. [Crossref]  [PubMed]  [PMC] 
  42. Desailloud R, Hober D. Viruses and thyroiditis: an update. Virol J. 2009;6:5. [Crossref]  [PubMed]  [PMC] 
  43. Tresoldi AS, Sumilo D, Perrins M, Toulis KA, Prete A, Reddy N, Wass JAH, Arlt W, Nirantharakumar K. Increased infection risk in Addison's disease and congenital adrenal hyperplasia. J Clin Endocrinol Metab. 2020;105:418-429. [Crossref]  [PubMed]  [PMC] 
  44. Edvardsen K, Bjånesøy T, Hellesen A, Breivik L, Bakke M, Husebye ES, Bratland E. Peripheral blood cells from patients with autoimmune Addison's disease poorly respond to interferons in vitro, despite elevated serum levels of interferon-inducible chemokines. J Interferon Cytokine Res. 2015;35:759-770. [Crossref]  [PubMed]  [PMC] 
  45. Isidori AM, Arnaldi G, Boscaro M, Falorni A, Giordano C, Giordano R, Pivonello R, Pofi R, Hasenmajer V, Venneri MA, Sbardella E, Simeoli C, Scaroni C, Lenzi A. COVID-19 infection and glucocorticoids: update from the Italian Society of Endocrinology Expert Opinion on steroid replacement in adrenal insufficiency. J Endocrinol Invest. 2020;43:1141-1147. [Crossref]  [PubMed]  [PMC] 
  46. Wheatland R. Molecular mimicry of ACTH in SARS - implications for corticosteroid treatment and prophylaxis. Med Hypotheses. 2004;63:855-862. [Crossref]  [PubMed]  [PMC] 
  47. Hahner S, Loeffler M, Bleicken B, Drechsler C, Milovanovic D, Fassnacht M, Ventz M, Quinkler M, Allolio B. Epidemiology of adrenal crisis in chronic adrenal insufficiency: the need for new prevention strategies. Eur J Endocrinol. 2010;162:597-602. [Crossref]  [PubMed] 
  48. Fleseriu M, Buchfelder M, Cetas JS, Fazeli PK, Mallea-Gil SM, Gurnell M, McCormack A, Pineyro MM, Syro LV, Tritos NA, Marcus HJ. Pituitary society guidance: pituitary disease management and patient care recommendations during the COVID-19 pandemic-an international perspective. Pituitary. 2020;23:327-337. [Crossref]  [PubMed]  [PMC] 
  49. Fleseriu M, Hashim IA, Karavitaki N, Melmed S, Murad MH, Salvatori R, Samuels MH. Hormonal replacement in hypopituitarism in adults: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2016;101:3888-3921. [Crossref]  [PubMed]